
Onion Routing:

Making a Tra�c Analysis Resistant Network

Robust and Fault-Tolerant

Michael George Reed

Department of Computer Science

University of Maryland

August 31, 1998

Abstract

Onion Routing is an infrastructure for private communication over a

public network. It provides anonymous connections that are strongly re-

sistant to both eavesdropping and tra�c analysis. Onion routing's anony-

mous connections are bidirectional, near real-time, and can be used any-

where a TCP/IP socket connection can be used. This prospectus outlines

the alpha onion routing system and de�nes a research path to overhaul

the system for additional portability, extensibility, functionality, and fault-

tolerance.

1 Introduction

Is Internet communication private? Most security concerns focus on preventing

eavesdropping, i.e., outsiders listening in on electronic conversations. But en-

crypted messages can still be tracked, revealing who is talking to whom. This

tracking and the inferences drawn are called tra�c analysis and may reveal sen-

sitive information. For example, the existence of inter-company collaboration

may be con�dential. Similarly, e-mail users may not wish to reveal who they

are communicating with to the rest of the world. In certain cases anonymity

may be desirable also: anonymous e-cash is not very anonymous if delivered

with a return address [16]. Web based shopping or browsing of public databases

should not require revealing one's identity.

A purpose of tra�c analysis is to reveal who is talking to whom. The anony-

mous connections described here are designed to be resistant to tra�c analysis,

i.e., to make it di�cult for observers to learn identifying information from the

connection (e.g., by reading packet headers, tracking encrypted payloads, etc.).

Any identifying information must be passed as data through the anonymous

1



connections. Onion routing provides bidirectional and near real-time communi-

cation similar to TCP/IP socket connections or ATM AAL5 [3]. The anonymous

connections can substitute for sockets in a wide variety of unmodi�ed Internet

applications by means of proxies. Data may also be passed through a privacy

�lter before being sent over an anonymous connection. This removes identifying

information from the data stream, to make communication anonymous too.

Although onion routing may be used for anonymous communication, it dif-

fers from anonymous remailers [20, 9] in two ways: Communication is real-time

and bidirectional, and the anonymous connections are application independent.

Onion routing's anonymous connections can support anonymous mail as well

as other applications. For example, onion routing may be used for anonymous

Web browsing. A user may wish to browse public Web sites without revealing

his identity to those Web sites. That requires removing information that iden-

ti�es him from his requests to Web servers and removing information from the

connection itself that may identify him. Hence, anonymous Web browsing uses

anonymized communication over anonymous connections. The Anonymizer [19]

only anonymizes the data stream, not the connection itself. So it does not pre-

vent tra�c analysis attacks like tracking data as it moves through the network.

The remainder of the prospectus is organized in the following way: Section 2

presents an overview of onion routing; Section 3 examines prior work in the areas

of tra�c analysis, privacy, and anonymity; Section 4 de�nes the threat model

for the system; Section 5 presents empirical data about the prototype system;

Section 6 describes the research to be performed for the actual dissertation and

the time-line to completion; Section 7 presents some concluding remarks.

2 Onion Routing Overview

In onion routing, instead of making socket connections directly to a responding

machine, initiating applications make connections through a sequence of ma-

chines called onion routers . The onion routing network allows the connection

between the initiator and responder to remain anonymous. Anonymous connec-

tions hide who is connected to whom, and for what purpose, from both outside

eavesdroppers and compromised onion routers. If the initiator also wants to

remain anonymous to the responder, then all identifying information must be

removed from the data stream before being sent over the anonymous connection.

Onion routers in the network are connected by longstanding (permanent)

socket connections. Anonymous connections through the network are multi-

plexed over the longstanding connections. For any anonymous connection, the

sequence of onion routers in a route is strictly de�ned at connection setup. How-

ever, each onion router can only identify the previous and next hops along a

route. Data passed along the anonymous connection appears di�erent at each

onion router, so data cannot be tracked en route, and compromised onion routers

cannot cooperate by correlating the data stream each sees. We will also see that

2



they cannot make use of replayed onions or replayed data.

2.1 Operational Overview

The onion routing network is accessed via a series of proxies . An initiating

application makes a socket connection to an application proxy . This proxy

massages connection message format (and later data) to a generic form that

can be passed through the onion routing network. It then connects to an onion

proxy , which de�nes a route through the onion routing network by constructing

a layered data structure called an onion. The onion is passed to the entry

funnel , which occupies one of the longstanding connections to an onion router

and multiplexes connections to the onion routing network at that onion router.

That onion router will be the one for whom the outermost layer of the onion

is intended. Each layer of the onion de�nes the next hop in a route. An onion

router that receives an onion peels o� its layer, identi�es the next hop, and sends

the embedded onion to that onion router. The last onion router forwards data

to an exit funnel , whose job is to pass data between the onion routing network

and the responder.

In addition to carrying next hop information, each onion layer contains an

expiration time, selected ciphers, ags, and key seed material from which keys

are generated for crypting1 data sent forward or backward along the anonymous

connection. (De�ne forward to be the direction in which the onion travels and

backward as the opposite direction.)

Once the anonymous connection is established, it can carry data. Before

sending data over an anonymous connection, the onion proxy adds a layer of

encryption for each onion router in the route. As data moves through the

anonymous connection, each onion router removes one layer of encryption, so

it arrives at the responder as plaintext. This layering occurs in the reverse

order for data moving back to the initiator. So data that has passed backward

through the anonymous connection must be repeatedly post-crypted to obtain

the plaintext.

By layering cryptographic operations in this way, the system gains an ad-

vantage over link encryption. As data moves through the network it appears

di�erent to each onion router. Therefore, an anonymous connection is as strong

as its strongest link, and even one honest node is enough to maintain the privacy

of the route. In link encrypted systems, compromised nodes can cooperate to

uncover route information.

Onion routers keep track of received onions until they expire. Replayed

or expired onions are not forwarded, so they cannot be used to uncover route

information, either by outsiders or compromised onion routers. Note that clock

skew between onion routers can only cause an onion router to reject a fresh

1De�ne the verb crypt to mean the application of a cryptographic operation, be it encryp-

tion or decryption.

3



onion or to keep track of processed onions longer than necessary. Also, since

data is encrypted using stream ciphers, replayed data will look di�erent each

time it passes through a properly operating onion router.

Although the system is called onion routing, the routing that occurs here

does so at the application layer of the protocol stack and not at the IP layer.

More speci�cally, the system relies upon IP routing to route data passed through

the longstanding socket connections. An anonymous connection is comprised of

portions of several linked longstanding multiplexed socket connections. There-

fore, although the series of onion routers in an anonymous connection is �xed for

the lifetime of that anonymous connection, the route that data actually travels

between individual onion routers is determined by the underlying IP network.

Thus, onion routing may be compared to loose source routing.

Onion routing depends upon connection based services that deliver data

uncorrupted and in-order. This simpli�es the speci�cation of the system. TCP

socket connections, which are layered on top of a connectionless service like IP,

provide these guarantees. Similarly, onion routing could easily be layered on

top of other connection based services, like ATM AAL5.

2.2 Con�gurations

As mentioned above neighboring onion routers are neighbors by virtue of having

longstanding socket connections between them, and the network as a whole is

accessed from the outside through a series of proxies. By adjusting where those

proxies reside it is possible to vary which elements of the system are trusted

by users and in what way. (For some con�gurations it may be e�cient to com-

bine proxies that reside in the same place, thus they may be only conceptually

distinct.)

2.2.1 Firewall Con�guration

In the �rewall con�guration, an onion router sits on the �rewall of a sensitive

site. This onion router serves as an interface between machines behind the

�rewall and the external network. Connections from machines behind the �re-

wall to the onion router are protected by other means (e.g., physical security).

To complicate tracking of tra�c originating or terminating within the sensitive

site, this onion router should also route data between other onion routers. This

con�guration might represent the system interface from a typical corporate or

government site. Here the application proxies (together with any privacy �l-

ters), and the onion proxies would typically live at the �rewall as well. There

are three important features of this basic con�guration:

� Connections between machines behind onion routers are protected against

both eavesdropping and tra�c analysis. Since the data stream never ap-

pears in the clear on the public network, this data may carry identifying

information, but communication is still private.

4



� The application proxies at the originating protected site knows both the

source and destination of a connection. This protects the anonymity of

connections from observers outside the �rewall but also simpli�es enforce-

ment of and monitoring for compliance with corporate or governmental

usage policy.

� The use of anonymous connections between two sensitive sites that both

control onion routers e�ectively hides their communication from outsiders.

However, if the responder is not in a sensitive site (e.g., the responder is

some arbitrary Web server) the data stream from the sensitive initiator

must also be anonymized. If the connection between the exit funnel and

the responding server is unencrypted, the data stream might otherwise

identify the initiator. For example, an attacker could simply listen in on

the connections to a Web server and identify initiators of any connection

to it.

2.2.2 Remote Proxy Con�guration

What happens if an initiator does not control an onion router? If the initiator

can make encrypted connections to some remote onion router, then he can func-

tion as if he is in the �rewall con�guration just described, except that both ob-

servers and the network can tell when he makes connections to the onion router.

However, if the initiator trusts the onion router to build onions, his association

with the anonymous connection from that onion router to the responder is hid-

den from observers and the network. In a similar way, an encrypted connection

from an exit funnel to a responder hides the association of the responder with

the anonymous connection .

Therefore, if an initiator makes an anonymous connection to some responder,

and layers end-to-end encryption over that anonymous connection, the initiator

and responder can identify themselves to one another, yet hide their commu-

nication from the rest of the world. This allows the building of virtual private

networks without protected sites.

Notice, however, that the initiator trusts the remote onion router to conceal

that the initiator wants to communicate with the responder, and to build an

anonymous connection through other onion routers. The next section describes

how to shift some of this trust from the �rst onion router to the initiator.

2.2.3 The Customer{ISP Con�guration

Suppose, for example, an Internet Services Provider (ISP) runs an in-funnel

that accepts connections from onion proxies running on subscribers' machines.

In this con�guration, users generate onions specifying a path through the ISP to

the destination. Although the ISP would know who initiates the connection, the

ISP would not know with whom the customer is communicating, nor would it

be able to see data content. So the customer need not trust the ISP to maintain

5



her privacy. Furthermore, the ISP becomes a common carrier, who carries data

for its customers. This may relieve the ISP of responsibility both for whom

users are communicating with and the content of those conversations.

The ISP may or may not be running an onion router as well. If he is running

an onion router, then it is more di�cult to identify connections that terminate

with his customers; however, he is serving as a routing point for other tra�c.

On the other hand, if he simply runs a funnel to an onion router elsewhere, it

will be possible to identify connections terminating with him, but his overall

tra�c load will be less. Which of these would be the case for a given ISP would

probably depend on a variety of service, cost, and pricing considerations.

Note that in this con�guration the entry funnel must have an established

longstanding connection to an onion router just like any neighboring onion

router. But, in most other cases, where the funnel resides on the same ma-

chine as the onion router, establishing an encrypted longstanding connection

should not be necessary since the funnel can be directly incorporated into the

onion router.

3 Related Work

Chaum [2] de�nes a layered object that routes data through intermediate nodes,

called mixes . These intermediate nodes may reorder, delay, and pad tra�c to

complicate tra�c analysis. In mixes, the assumption is that a single perfect

mix adequately complicates tra�c analysis, but a sequence of multiple mixes is

typically used because real mixes are not ideal. Because of this, mix applications

can use mixes in �xed order, and often do. Onion routers di�er from mixes in at

least two ways: onion routers are more limited in the extent to which they delay

tra�c at each node because of the real-time expectations that the applications

demand of socket connections. Also, in a typical onion routing con�guration,

onion routers are also entry points to the onion routing network, and tra�c

entering or exiting at those nodes may not be visible. This makes it hard to

track packets, because they may drop out of the network at any node, and new

packets may be introduced at each node. While onion routing cannot delay

tra�c to the extent that mixes can, tra�c between onion routers is multiplexed

over a single channel and is link encrypted with a stream cipher. This makes it

hard to parse the stream.

Anonymous remailers like Penet [22] strip headers from received mail and

forward it to the intended recipient. They may also replace the sender's address

with some alias, permitting replies. These sorts of remailers store sensitive

state: the mapping between the alias and the true return address. Also, mail

forwarded through a chain of remailers may be tracked because it appears the

same to each remailer.

Mix based remailers like [20, 9] use mixes to provide anonymous e-mail ser-

vices. Essentially, the mail message is carried in the innermost layer of the onion

6



data structure. Another onion type structure, used for a return address, can

be contained in the message. This makes the return path self contained, and

the remailer essentially stateless. Onion routing shares many structures with

Babel [9] but it uses them to build (possibly long lived) application independent

connections. This makes anonymous connections accessible to a wide variety of

applications. For application to e-mail it has both advantages and disadvan-

tages. Onion routing's service makes an anonymous connection directly to the

recipient's sendmail daemon. A disadvantage is that, since the connection is

made in real-time, there is less freedom in mixing, which therefore might not

be done as well. An advantage is that the anonymous connection is separated

from the application, so anonymous e-mail systems are considerably simpli�ed

because the application speci�c part does not have to move data through the

network. Furthermore, because the onion routing network can carry many types

of data, it has the potential to be more heavily utilized than a network that is

devoted only to e-mail. Heavy utilization is the key to anonymity.

In [4], a structure similar to an onion is used to forward individual IP pack-

ets through a network. By maintaining tracking information at each router,

ICMP error messages can be moved back along the hidden route. Essentially,

a connection is built for each packet in a connectionless service. Although

a followup paper [5] suggests that performance will be good, especially with

hardware based public key cryptography, empirical tests suggest that both the

cryptographic overhead of building onions and the tracking of onions against

replay is not e�ciently done on a packet-by-packet basis. However, it is easy to

imagine an onion routing proxy that collects IP packets and forwards them over

some anonymous connection. In this way, communication is anonymous at the

IP layer, but connections need not be built for each IP packet. This anonymous

IP communication may be more robust than the onion routing architecture: it

could survive a broken anonymous connection, since IP does not expect reliable

delivery. In fact, we can build virtual private networks in this way over onion

routing.

In [10], mixes are used to provide untraceable communication in an ISDN

network. In a phone system, each telephone line is assigned to a particular

local switch (i.e., local exchange), and switches are interconnected by a (long

distance) network. Anonymous calls in ISDN rely upon an anonymous connec-

tion between the caller and the long distance network. These connections are

made anonymous by routing calls through a prede�ned series of mixes within

each switch. The long distance endpoints of the connection are then mated

to complete the call. (Notice that observers can tell which local switches are

connected.) Also, since each phone line has a control circuit connection to the

switch, the switch can broadcast messages to each line using these control cir-

cuits. So, within a switch a truly anonymous connection can be established: A

phone line makes an anonymous connection to some mix. That mix broadcasts

a token identifying itself and the connection. A recipient of that token can

make another anonymous connection to the speci�ed mix, which mates the two

7



connections to complete the call.

The goal of anonymous connections over the Internet di�ers from anonymous

remailers and anonymous ISDN. The data is di�erent, with real-time constraints

more severe than mail, but somewhat looser than voice. Both HTTP and ISDN

connections are bidirectional, but, unlike ISDN, HTTP connections are likely to

be small requests followed by short bursts of returned data. Most importantly,

the network topology of the Internet is more akin to the network topology of the

long distance network between switches, where capacity is a shared resource.

In anonymous ISDN, the mixes hide communication within the local switch,

but connections between switches are not hidden. This implies that all calls

between two businesses, each large enough to use an entire switch, reveal which

businesses are communicating. In onion routing, mixing is dispersed throughout

the Internet, which improves hiding.

Pipe-net [21] is a proposal similar to onion routing that has never (and one

might contend cannot ever) been built. Pipe-net's threat model is more paranoid

than onion routing's: it attempts to resist active attacks by global observers.

For example, Pipe-net's connections carry constant tra�c, are all created at

network setup, can never be destroyed, and any disruptions or degradations to

any connection must be instantly propagated to all connections throughout the

entire network.

The Anonymizer is a Web proxy that �lters the HTTP data stream to remove

a user's identifying information, essentially as the onion router �ltering HTTP

proxy does. For example, the Anonymizer will \strip out all references to your

e-mail address, computer type, and previous page visited before forwarding

your request" [19]. This makes Web browsing private in the absence of any

eavesdropping or tra�c analysis. The Anonymizer is vulnerable in three ways:

First, it must be trusted. Second, tra�c between a browser and the Anonymizer

is sent in the clear, so that tra�c identi�es the true destination of a query, and

includes the identifying information that the Anonymizer would �lter. Third,

even if tra�c between the browser and the Anonymizer were encrypted, passive

external observers could mount the volume attack mentioned in section 4.1. The

Anonymizer, however, is now readily available to everyone on the Web.

NetAngels [24] is similar to the Anonymizer, except that it builds personal

pro�les of its subscribers and targets advertisements to match the pro�le. How-

ever, the pro�le is not released to the advertiser and is deleted when a sub-

scription is canceled. Subscribers must trust NetAngels, and connections to the

service are subject to the same attacks as the Anonymizer.

LPWA [23, 6] (formerly known as Janus) is a \proxy server that generates

consistent untraceable aliases for you that enable you to browse the Web, register

at web sites and open accounts, and be `recognized' upon returning to your

accounts, all while still preserving your privacy." Like the previous two, the

LPWA proxy is at a server that is remote from the user application. It is thus

subject to the same trust and vulnerability limitations.

It is possible, however, to shift trusted elements to the user's machine (or to a

8



machine on the boundary between his trusted LAN and the Internet). Shifting

trust in this way can improve the security of other privacy services like the

Anonymizer, NetAngels, and LPWA. Currently, those are centralized to provide

an intermediary that masks the true source of a connection. If anonymous

connections are used to hide the source address instead, the other functions

of these services may run as a local proxy on the user's desktop. Security is

improved because privacy �ltering and other services are done on a trusted

machine and because communication is resistant to tra�c analysis. Also, there

is no central point of failure.

Another approach to anonymous Web connections is Crowds [15]. Crowds is

essentially a distributed and chained Anonymizer, with encrypted links between

crowd members. Web tra�c is forwarded to a crowd member, who ips a

weighted coin and, depending on the result, forwards it either to some other

crowd member or to the destination. This system gives probable deniability, it

does not give you privacy since all crowd members can see all tra�c traversing

them.

4 Threat Model

4.1 Threats

This section outlines the threat model. It does not intend to quantify the cost

of attacks, but to de�ne possible attacks. Future work will quantify the threat.

First some vocabulary. A session is the data carried over a single anonymous

connection. Data is carried in �xed length cells. Since these cells are multiply

encrypted and change as they move through an anonymous connection, tracking

cells is equivalent to tracking markers that indicate when cells begin. In a

marker attack, the attacker identi�es the set of out-bound connections that some

distinguished marker may have been forwarded upon. By intersecting these sets

for a series of distinguished markers belonging to the same session, an attacker

may determine, or at least narrow, the set of possible next hops. In a timing

attack, the attacker records a timing signature for a session that correlates data

rate over time. A session may have a very similar timing signature wherever it

is measured over a route, so cooperating attackers may determine if they carry

a particular session.

It is assumes that the network is subject to both passive and active attacks.

Tra�c may be monitored and modi�ed by both external observers and internal

network elements, including compromised onion routers. Attackers may coop-

erate and share information and inferences. Furthermore, it is assumed roving

attackers that can monitor part, but not all, of the network at a time.

The goal is to prevent tra�c analysis, not tra�c con�rmation. If an attacker

wants to con�rm that two endpoints often communicate, and he observes that

they each connect to an anonymous connection at roughly the same time, more

9



often than is statistically expected, it is reasonable to infer that the endpoints

are indeed communicating. Notice that this attack is infeasible if endpoints live

in protected networks behind trusted onion routers on �rewalls.

If the onion routing infrastructure is uniformly busy, then passive external

attacks are ine�ective. Speci�cally, neither the marker nor timing attacks are

feasible, since external observers cannot assign markers to sessions. Active at-

tacks are possible since reducing the load on the system makes the network

easier to analyze (and makes the system not uniformly busy).

Passive internal attacks require at least two compromised onion routers.

Since onion routers can assign markers to a session, both the marker and tim-

ing attacks are possible. Speci�cally, timing signatures can be broadcast, and

other compromised onion routers can attempt to �nd connections with matching

timing signatures.

Another attack that is only feasible as an internal attack is the volume attack.

Compromised onion routers can keep track of the number of cells that have

passed over any given anonymous connection. They can then simply broadcast

totals to other compromised onion routers. Cell totals that are close to the same

amount at the same time at di�erent onion routers are likely to belong to the

same anonymous connection.

Active internal attacks amplify these risks, since individual onion routers

can selectively limit tra�c on particular connections. An onion router could,

for example, force a particular timing signature on a connection, and advertise

that signature.

4.2 Implementation Vulnerabilities

An implementation of a secure design can be insecure. This section describes

several implementation decisions that were made for security considerations.

Onions are packaged in a sequence of cells that must be processed together.

This onion processing involves a public key decryption operation which is rel-

atively expensive. Therefore, it is possible to imagine an implementation that

clears outgoing queues while an onion is being processed, and then outputs the

onion. Therefore, any period of inactivity on the out-bound queues is likely to

be followed by a sequence of onion cells being output on a single queue. Such

an implementation makes tracking easier and should be avoided.

After processing at each onion router, onions are padded at the end to com-

pensate for the removed layer. Similarly, the length and payload of a DESTROY

command must be new random content at each onion router; otherwise, com-

promised onion routers could track that payload.

In a multi-threaded implementation, there is a signi�cant lure to rely upon

apparent randomness in scheduling to reorder events. If reordering is important

to the secure operation of the system, deliberate reordering is crucial, since low

level system randomness may in fact be predictable.

10



There are two vulnerabilities for which good solutions do not currently exist.

If part of the onion routing network is taken down, tra�c analysis may be sim-

pli�ed. Also, if a longstanding connection between two onion routers is broken,

it will result in many DESTROY messages, one for each anonymous connection

that was routed through that longstanding connection. Therefore, a compro-

mised onion router may infer from near simultaneous DESTROY messages that

the associated anonymous connections had some common route. Delaying DE-

STROY messages hurts performance, since it is required that a DESTROY

message propagate to the endpoints to take down the connection that is vis-

ible to the user. Carrying the DESTROY message through the anonymous

connection and garbage collecting dormant anonymous connections later would

be ideal, but control information cannot be e�ciently insert into a raw data

channel, especially considering the layered encryption.

The system as a whole is susceptible to both lulls and spikes in tra�c through

any portion of the network. To mitigate the traceability of these events by

external observers, the core onion routers pad and rate-cap the longstanding

connections. Likewise, end-to-end padding and rate-caps can be controlled by

both the in-funnel and exit-funnel.

5 Empirical Data

Readers are invited to experiment with the prototype of onion routing net-

work by using it to anonymously surf the Web. For instructions please see

http://www.onion-router.net/.

One should be aware that accessing a remote onion router does not com-

pletely preserve anonymity, because the connection between a remote machine

and the �rst onion router is not protected. If that connection were protected,

one would be in the remote proxy con�guration, but there would would still be

no reason to trust the remote onion router. If one had a secured connection to

an onion router one trusted, the prototype onion router could be used as one of

several intermediate routers.

The data presented below is for a network running on a single machine. In

the experimental onion routing network, �ve onion routers run on a single Sun

Ultrasparc 2 2170. This machine has two 167 MHz processors, and 256MB

of memory. Anonymous connections are routed through a random sequence

of �ve onion routers. Connection setup time should be comparable to a more

distributed topology provided the machine does not become CPU bound. Data

latency, however, is more di�cult to judge. Clearly, data will travel faster

over socket connections between onion routers on the same machine than over

socket connections between di�erent machines. However, on a single machine

the removal or addition of layers of encryption is not pipelined, so data latency

will probably be worse.

Onion routing's overhead is mainly due to public key cryptography and

11



is incurred while setting up an anonymous connection. On the Ultrasparc 2

running a fast implementation of RSA [1], a single public key decryption of a

1024 bit plaintext block using a 1024 bit private key and a 1024 bit modulus

takes 90 milliseconds. Encryption is much faster, because the public keys are

only 16 bits long. (This is why RSA signature veri�cation is cheaper than

signing). So, the public key cryptographic overhead for routes spanning �ve

onion routers is just under 0.5 seconds. This overhead can be further reduced,

either with specialized hardware, or even simply on di�erent hardware (a 200

MHz Pentium would be almost twice as fast).

In practice, the connection setup overhead does not appear to add intolerably

to the overhead of typical web connections. There is no reason that the same

anonymous connection could not be used to carry the tra�c for several `real'

socket connections, either sequentially or multiplexed. In fact, the speci�cation

for HTTP 1.1 de�nes pipelined connections to amortize the cost of socket setup,

and pipelined connections would also transparently amortize the increased cost

of anonymous connection setup.

Prototypes onion routing networks have been running since July 1997. Over

a �ve month test period in 1998, more than 1.1 million Web connections were

completed through the NRL prototype network from more than six thousand

IP addresses in twenty countries and in all six main top level domains. Recent

load statistics place us at close to 14,000 connections per day.

6 Dissertation Work

For the sake of brevity, many of the details of onion routing have been omitted

from this prospectus but can be found in [7, 8, 11, 12, 13, 14, 17, 18]. Although

I can claim the original kernel of the onion routing concept as my own, the

bulk of this work has been a collaborative e�ort between Dr. David Goldschlag

(formerly of NRL, now working for Divx), Dr. Paul Syverson (NRL), and myself

with support from ONR, DARPA, and NRL. In light of this, I have chosen two

original sections to explore within the system by myself: the Onion Routing

Database Engine and Onion Router Clustering.

6.1 Onion Routing Database Engine

The original alpha onion routing system was highly vulnerable to breaks in the

network graph of core onion routers. As detailed in section 4.2, breaks in the

network graph result in the propagation of DESTROY messages throughout the

network. Additionally, a break in the graph must be reported to every onion

proxy.

The onion proxy is the critical component trusted with selecting a route

through the network and building the onion which encapsulates that route. In

order for to accomplish this, the onion proxy must know the state of the entire

12



network, know which exit points from the network would be most appropriate for

a particular connection, and know all of the core onion router public certi�cates.

It is reasonable to expect that the onion proxy may not know the entire graph

at one time, or that the graph may be in a state of change therefore invalidating

some of its knowledge. This may result in bad route selection which would

require testing the onion and then selecting a new route.

Therefore, the network graph can be characterized as a dynamically chang-

ing, decentralized in nature of update origin, must be semi-consistent (i.e., we

should resolve to a consistent state at all nodes, but some delay in propagation

is allowed in which case di�erent nodes will see a di�erent picture of the world),

capable of withstanding both outsider and insider attacks, and be distributed

in an e�cient manner. These constraints have lead to a highly distributed de-

sign utilizing a ood-�ll (link state) algorithm to distribute the three types of

information: public certi�cates, exit policies, and network connectivity.

A comprehensive analysis of the system still needs to be performed to deter-

mine whether or not the ood-�ll algorithm ful�lls the needs described above

with emphasis on both security and performance.

6.2 Onion Router Clustering

Onion routing is highly dependent on public key cryptography, speci�cally RSA.

Unfortunately, public key cryptography is extremely costly to perform computa-

tionally, and while hardware assist devices are becoming available, they tend to

be exorbitantly expensive and lack the speed necessary to make a wide-spread

deployment feasible. Another limitation shown above in section 6.1 is that

changes in the network graph must be propagated to all onion proxies. Onion

router clustering gracefully solves both of these problems while also giving us

fault-tolerance in the design as a side bene�t.

Clustering works by establishing a set of physically and/or logically separate

(from a physical network prospective) core onion routers with the same identity

(i.e. public certi�cate) and fully interconnecting all nodes within the set with the

set's neighbors. When a neighbor to the cluster receives a new onion destined

for the cluster, it ips a coin and forwards the onion to a particular cluster

member. The cluster member process the onion as before.

A couple points are worth noting and must be explored:

� As long as one node within the cluster remains connected to its neighbors,

the network graph need not change if individual nodes or links fail since

from a macro prospective, the cluster is still connected. This reduces net-

work load for updates to the graph and gains fault-tolerance from failure

of nodes and links.

� Graceful increases and decreases in capacity can be accomplished. No

longer will one need to run the latest and greatest hardware to get a

performance boost.

13



� Detection of onion replay is no longer trivial since a malicious neighbors

can choose which member of the cluster to forward an onion to. A new

replay detection scheme must be developed for the clustering approach.

� Multiple parties are now in control of the same private certi�cate. From a

security prospective, this is a bad policy to pursue. Countermeasures for

detecting private certi�cate compromise will need to be explored.

� Because malicious neighbors are given a choice as to which cluster member

to forward an onion to, the threat analysis will need to be extended to

consider signaling information via that choice to a colluding neighbor on

the other side of a cluster.

6.3 Dissertation Outline and Time-line

A breakdown of the proposed dissertation follows:

Chapter 1: Introduction and description of the problem

Chapter 2: Prior work

Chapter 3: Theoretical design of Onion Routing (alpha architecture)

Chapter 4: Engineering issues of Onion Routing (beta architecture)

Chapter 5: Threat Analysis of the beta architecture

Chapter 6: Database system design and extended threat analysis

Chapter 7: Clustering design and extended threat analysis

Chapter 8: Performance/usage/policy discussion

Chapter 9: Conclusions and future research directions

Chapter 1, 2, 3, and 4 would draw heavily on articles that I have co-authored

and my internal notes/documentation. Chapter 5 would be based on a paper

I am co-authoring with people inside NRL and elsewhere. Chapters 6 and 7

would be solely my contributions to the project and would be considered the

novel portions of the work. Chapter 8 would most likely be my exclusive work,

but that will be more reporting of �ndings and policy discussions rather than

what I would term as security research.

The beta system is due to be delivered to ONR by the close of �scal year

'98. Much of the performance / usage / policy work will be conducted in

�scal year '99 under NRL funding. The comprehensive threat analysis paper is

underway and should appear during calendar year '99. Most of the onion routing

database engine research is complete, but the extended threat analysis will have

to wait for the completion of the threat analysis paper. Clustering work will be

performed during �scal year '99. I expect all research and preliminary analysis

to be complete by the close of calendar year '99 and to complete the dissertation

in time to graduate during the spring of '00.

14



7 Conclusion

Anonymous connections are resistant to both eavesdropping and tra�c analysis.

They separate the anonymity of the connection from the anonymity of commu-

nication over that connection. Anonymous connections may be used as a new

primitive that enables novel applications in addition to facilitating secure ver-

sions of existing services [12]. The onion routing network supporting anonymous

connections can be con�gured in several ways, including a �rewall con�guration

and a customer-ISP con�guration, which moves privacy to the user's computer

and may relieve the carrier of responsibility for the user's connections. Onion

routing moves the anonymous communications infrastructure below the appli-

cation level, properly separating communication and applications. Since the

e�cacy of mixes depends upon su�cient network tra�c, allowing di�erent ap-

plications to share the same communications infrastructure increases the ability

of the network to resist tra�c analysis.

References

[1] T. Acar, B. Kaliski, Jr., and C� . Ko�c. \Analyzing and Comparing Mont-

gomery Multiplication Algorithms", IEEE Micro, 16(3):26-33, June 1996.

[2] D. Chaum. \Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms", Communications of the ACM , v. 24, n. 2, Feb. 1981, pp.

84-88.

[3] D. Comer. Internetworking with TCP/IP, Volume 1: Principles, Protocols,

and Architecture, Prentice{Hall, Engelwood Cli�s, New Jersey, 1995.

[4] A. Fasbender, D. Kesdogan, O. Kubitz. \Variable and Scalable Security:

Protection of Location Information in Mobile IP", 46th IEEE Vehicular

Technology Society Conference, Atlanta, March 1996.

[5] A. Fasbender, D. Kesdogan, O. Kubitz. \Analysis of Security and Privacy

in Mobile IP", 4th International Conference on Telecommunication Systems

Modeling and Analysis , Nashville, March 1996.

[6] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer. \How to Make Personal-

ized Web Browsing Simple, Secure, and Anonymous", Financial Cryptog-

raphy '97 , February 1997, �nal proceedings to appear.

[7] D. Goldschlag, M. Reed, and P. Syverson. \Privacy on the Internet", INET

'97, Kuala Lumpur, June 1997.

[8] D. Goldschlag, M. Reed, P. Syverson. \Hiding Routing Information", in

Information Hiding , R. Anderson, ed., LNCS vol. 1174, Springer-Verlag,

1996, pp. 137{150.

15



[9] C. G�ulc�u and G. Tsudik. \Mixing Email with Babel", 1996 Symposium on

Network and Distributed System Security , San Diego, February 1996.

[10] A. P�tzmann, B. P�tzmann, and M. Waidner. \ISDN-Mixes: Untraceable

Communication with Very Small Bandwidth Overhead", GI/ITG Con-

ference: Communication in Distributed Systems , Mannheim Feb, 1991,

Informatik-Fachberichte 267, Springer-Verlag, Heidelberg 1991, pp. 451-

463.

[11] M. Reed, P. Syverson, and D. Goldschlag. \Proxies for Anonymous Rout-

ing", Proc. 12th Annual Computer Security Applications Conference, San

Diego, CA, IEEE CS Press, December, 1996, pp. 95{104.

[12] M. Reed, P. Syverson, and D. Goldschlag. \Protocols using Anonymous

Connections: Mobile Applications", Security Protocols, 5th International

Workshop Proceedings , B. Christianson, B. Crispo, M. Lomas, and M. Roe

(editors), Springer-Verlag LLNCS 1361, 1998, pp. 13-23.

[13] M. Reed, P. Syverson, and D. Goldschlag, \Anonymous Connections and

Onion Routing," IEEE Journal on Selected Areas in Communication Spe-

cial Issue on Copyright and Privacy Protection, 1998.

[14] M. Reed, P. Syverson, and D. Goldschlag, \Onion Routing Network for

Securely Moving Data through Communication Networks," patent pending,

Navy Case 78,415.

[15] M. Reiter and A. Rubin. Crowds: Anonymity for Web Transactions (pre-

liminary announcement), DIMACS Technical Reports 97-15, April 1997.

[16] D. Simon, \Anonymous Communication and Anonymous Cash", in Ad-

vances in Cryptology{CRYPTO`96 , N. Koblitz, ed., LNCS vol. 1109,

Springer-Verlag, 1996, pp. 61{73.

[17] P. Syverson, D. Goldschlag, and M. Reed. \Anonymous Connections and

Onion Routing", Proceedings of the 1997 IEEE Symposium on Security and

Privacy , Oakland, CA, IEEE CS Press, May 1997, pp. 44{54.

[18] P. Syverson, M. Reed, and D. Goldschlag, \PrivateWeb Browsing," Journal

of Computer Security Special Issue on Web Security, Volume 5, Number 3,

1997, pp. 237-248.

[19] The Anonymizer. http://www.anonymizer.com/

[20] L. Cottrell. Mixmaster and Remailer Attacks,

http://obscura.obscura.com/~loki/remailer/remailer-essay.html

[21] W. Dai. Pipe-net, February 1995, post to the cypherpunks mailing list.

16



[22] J. Helsingius. http://www.penet.fi/

[23] LPWA. http://www.lpwa.com/

[24] NetAngels. http://www.netangels.com/

17


